UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN PROGRAMA DE UNIDAD DE APRENDIZAJE POR COMPETENCIAS

I. DATOS DE IDENTI	FICACIÓN
 Unidad Académica: <u>FACULTAD DE CIENCIAS</u> Programa (s) de estudio: (Técnico, Licenciatura): <u>LICENCIATUR</u> Vigencia del plan: <u>2008-1</u> Nombre de la Unidad de Aprendizaje: <u>LABORATORIO DE FÍS</u> 	RA EN FISICA SICA I5. Clave:
5. 6. HC: 0 HL 3 HT 0 HPC HCL HE 0 6. 7. Ciclo Escolar: 2008-1 8. Etapa de formació 7. 9. Carácter de la Unidad de Aprendizaje: Obligatoria X 10. Requisitos para cursar la unidad de aprendizaje: Ninguno	O CR 3 On a la que pertenece: BÁSICA Optativa
Formularon: M.C. Jesús Ramón Lerma Aragón	VoBo.
Fecha: Septiembre de 2007	Cargo: Coordinador Formación Básica

II. PROPÓSITO GENERAL DEL CURSO

El propósito del curso es que el estudiante, participe activamente en la planeación y evaluación de experimentos como parte de investigaciones para las que deducirá los principios físicos que rigen los fenómenos observados, o cuantificara parámetros de los sistemas físicos. Asimismo, aprovechara la relación del contenido de este curso con el curso de Física I, y hará uso de las técnicas de análisis, e interpretación de resultados.

III. COMPETENCIA (S) DEL CURSO

Manejar la física básica con la suficiente madurez en el pensamiento abstracto como para poder llevar a cabo, experimentos utilizando herramientas computacionales y técnicas experimentales, objetividad en la manipulación de datos e iniciativa para proponer alternativas innovadoras y distinguir aquellas áreas donde se aplique, desarrollando la intuición mediante el reforzamiento del análisis y crítica con actitud de respeto y responsabilidad.

IV. EVIDENCIA (S) DE DESEMPEÑO

Elaborar un reporte de cada una de las prácticas donde comunicara sus hallazgos de manera clara y correcta, realizando el análisis de los datos, utilizando técnicas y herramientas vistas en el curso, para impulsar el razonamiento del estudiante a fin de que llegue a conclusiones.

VI. ESTRUCTURA DE LAS PRÁCTICAS

No. de Práctica	Competencia(s)	Descripción	Material de Apoyo	Duración
1	Aprender las distintas técnicas experimentales para medir cantidades físicas, los métodos relevantes del análisis de datos y la estimación de errores, así como el uso de los equipos básicos en el laboratorio.	Introducción al Laboratorio		6 hrs.
2	Entender y discutir la diferencia entre el error aleatorio y el error sistemático, así como la manera de evitarlo, o en su defecto, la manera de trabajar con ellos.	Análisis de errores experimentales	Cinta métrica, Cronómetro, Vernier, Micrómetro, Regla, Balines.	6 hrs.
3	Entender y medir la velocidad promedio y la velocidad instantánea de un móvil	Velocidad promedio	Riel de aluminio. Cronómetro. Cinta métrica. Balín. Nivel	6 hrs
4	Entender y medir la aceleración media e	Cinemática: velocidad y aceleración	Cinta métrica, Riel de aire, Interruptor óptico	3 hrs

	instantánea aceleración de un móvil		de PASCO, Inclinómetro	
5	Comprobar experimentalmente que los cuerpos en caída libre se ven sometidos a una aceleración constante, no importando la masa de éste. Esta aceleración es la debida a la fuerza gravitacional de la Tierra, la cual es de aproximadamente igual a 9.8 m/s².	Caída Libre	Dispositivo de caída libre, Balines de diferentes masas, cinta métrica, Foto-obturador óptico.	3 hrs
6	Obtener experimentalmente las ecuaciones del tiro parabólico.	Tiro Parabólico	Cañón de balines. Foto-obturador óptico, Cinta métrica, Nivel.	3 hrs
7	Determinar experimentalmente el tiempo de vuelo y velocidad inicial de una pelota lanzada horizontalmente y a un ángulo.	Tiempo de vuelo	Cañón de balines, Foto-obturador óptico,	3 hrs
8	Determinar experimentalmente la distancia horizontal que alcanza un proyectil lanzado a un ángulo determinado, y comparar con la distancia obtenida de manera teórica al utilizar el tiempo de vuelo y la velocidad	Alcance horizontal	Cinta métrica, Nivel Cañón de balines,	3 hrs

	inicial.		Foto-obturador óptico,	
9	Establecer por medio de la experimentación, las ecuaciones que relacionan el	Segunda Ley de Newton	Cinta métrica, Inclinómetro,	
	movimiento uniformemente acelerado y sus causas.		abrazaderas.	3 hrs
10	Determinar, por medio de la experimentación, el coeficiente de rozamiento estático entre materiales con diferentes superficies.	Coeficiente de Fricción: estático y dinámico	Riel de baja fricción, Carro deslizador, pesas y porta pesas, cinta métrica, cuerda Foto-obturador óptico, Polea, nivel.	3 hrs
11	Medir el trabajo realizado por un objeto y su cambio de energía cinética, para comprobar el teorema trabajo-energía.	Trabajo y Energía	Tres distintos bloques o móviles Polea, Cuerda, Juego de Pesas y porta pesas, Balanza, Inclinómetro.	3 hrs

			Equipo de cómputo e Interfase, Sensor de	
12	Estudiar la relación entre la fuerza, la masa, y la aceleración que usa el aparato de Máquina de Atwood.	Máquina de Atwood.	Fuerza, Carro dinámico, Riel, pesas y porta pesas, Balanza, Hilo y polea	3 hrs
13	Estudiar una colisión elástica y medir el cambio del momento durante la colisión, así como la integral de la fuerza durante el tiempo de la colisión.	Colisión - Impulso y Momento	Equipo de cómputo e Interfase, juegos de masa y porta masas, Hilo y polea inteligente.	3 hrs
			Equipo de cómputo e Interfase, sensor de fuerza, carro, base para sensor de	

		fuerza, riel de 2.2	
		metros.	

VII. METODOLOGÍA DE TRABAJO

- 1. Los estudiantes realizarán las practicas que previamente indicará el profesor del curso y se discutirán en el aula su realización
- 2. Se promoverá el trabajo en equipo y se llevarán a cabo las actividades que serán reportadas en forma individual.
- 3. Se recomienda que el estudiante realice un proyecto final sobre alguno de los temas revisados durante el curso, para que se revise en forma y fondo, retroalimentando al alumno con recomendaciones específicas.

VIII. CRITERIOS DE EVALUACIÓN

Se evaluará:

- 1) Que el estudiante haya participado en la realización del experimento.
- 2) Que el estudiante presente un reporte de lo realizado, que incluirá:
 - a) Las mediciones realizadas y con que se midió (instrumento)
 - b) Críticas y tablas.
 - c) Esquemas de los observado (si es necesario)
 - d) Respuestas a las preguntas que se hacen en la guía.
 - e) Conclusión en la que se incluye una explicación de sí se alcanzó o no el objetivo de la experiencia.

Se sugiere que la calificación final se obtenga, otorgando un 80% al promedio de las calificaciones de los reportes de cada experimento y en 20% al desempeño del estudiante en el laboratorio.

IX. BIBLIOGRAFÍA	
Básica	Complementaria
Experimentación, D.C. Baird, Segunda Edición, Prentice	
Hall, Pearson Educación.	
 Física re-Creativa, Salvador Gil/Eduardo Rodríguez, 	
Prentice Hall, Pearson Educación.	
 Fundamentos de Física, Hallliday/Resnick/Walker, 	
Sexta Edición, CECSA	
Physics Labs with Computers, Pasco scientific	